Accelerating Random Walks

نویسندگان

  • Wei Wei
  • Bart Selman
چکیده

In recent years, there has been much research on local search techniques for solving constraint satisfaction problems, including Boolean satisfiability problems. Some of the most successful procedures combine a form of random walk with a greedy bias. These procedures are quite effective in a number of problem domains, for example, constraint-based planning and scheduling, graph coloring, and hard random problem instances. However, in other structured domains, backtrack-style procedures are often more effective. We introduce a technique that leads to significant speedups of random walk style procedures on structured problem domains. Our method identifies long range dependencies among variables in the underlying problem instance. Such dependencies are made explicit by adding new problem constraints. These new constraints can be derived efficiently, and, literally, “accelerate” the Random Walk search process. We provide a formal analysis of our approach and an empirical validation on a recent benchmark collection of hardware verification problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized (c, d)-Entropy and Aging Random Walks

Complex systems are often inherently non-ergodic and non-Markovian and Shannon entropy loses its applicability. Accelerating, path-dependent and aging random walks offer an intuitive picture for non-ergodic and non-Markovian systems. It was shown that the entropy of non-ergodic systems can still be derived from three of the Shannon–Khinchin axioms and by violating the fourth, the so-called comp...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Large Deviations for Random Walks in a Mixing Random Environment and Other (Non-Markov) Random Walks

We extend a recent work by S. R. S. Varadhan [8] on large deviations for random walks in a product random environment to include more general random walks on the lattice. In particular, some reinforced random walks and several classes of random walks in Gibbs fields are included. c © 2004 Wiley Periodicals, Inc.

متن کامل

Reducing Search Lengths with Locally Precomputed Partial Random Walks

Random walks can be used to search complex networks for a desired resource. To reduce the number of hops necessary to find resources, we propose a search mechanism based on building random walks connecting together partial walks that have been precomputed at each network node in an initial stage. The resources found in each partial walk are registered in its associated Bloom filter. Searches ca...

متن کامل

A Bounded Model of Time Variation in Trend Inflation, NAIRU and the Phillips Curve

In this paper, we develop a bivariate unobserved components model for inflation and unemployment. The unobserved components are trend inflation and the non-accelerating inflation rate of unemployment (NAIRU). Our model also incorporates a time-varying Phillips curve and time-varying inflation persistence. What sets this paper apart from the existing literature is that we do not use unbounded ra...

متن کامل

Branching Random Walks and Their Applications to Population Studies

Recent investigations have demonstrated that continuous-time branching random walks on multidimensional lattices give an important example of stochastic models in which the evolutionary processes depend on the structure of a medium and the spatial dynamics. It is convenient to describe such processes in terms of birth, death, and walks of particles on the lattice. The structure of a medium is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002